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tronics model 547 oscilloscope, and X and Y cut quartz
driver and detector crystals.

Low temperatures were measured using a calibrated
copper-constantan thermocouple, while high tempera-
tures were measured using a chromel-alumel thermo-
couple. The temperature ranges of the two apparatus
overlapped so that an internal check on the instru-
ments and specimens was provided.

DATA TREATMENT

The experimental data were treated in much the
same way as the work on niobium reported earlier by
the authors.* Briefly, plots were made of the funda-
mental resonance frequency vs temperature for both
the longitudinal and torsional vibration modes for each
of the four crystals over the temperature range from
—200°C to approximately 660°C. Resonance fre-
quencies were then determined graphically for both
vibrational modes of each crystal at 20°C intervals.
This method circumvented the necessity of taking the
measurements on each crystal at exactly the same
temperature.

Corrections for changes in the length and density
of the specimen were made using a mean linear thermal
expansion coefficient of 5.31X10-% per °C. Knowing
the temperature, resonance frequency, specimen length
and density, and the thermal expansion coeflicient,
the moduli were calculated from the following equa-
tion:

Modulus (E or G) =4Pf*p(1+aAT),

where f is the resonance frequency, longitudinal if £
is being calculated and torsional if G is being calculated,
I is the specimen length, p is the specimen density, «
is the thermal expansion coefficient, and AT is the
difference between 25°C and the temperature. Using
¢gs units the modulus is given in dyn-cm™=,

The calculated values of Young’s and shear moduli
were combined with the measured orientation func-
tions to calculate the elastic stiffness coefficients. The
calculations were made on a computer using a least

TasLE II. Chemical analysis of Mo specimens.

Semi-Element  Linde crystals

crystals (ppm) (ppm)
0. 40 to 80 10 to 30
N. 40 30
€ 30 30
Ni 30 <10
Cu 5 <3

‘P. E. Armstrong, J. M. Dickinson, and H. L. Brown, Trans.
AIME 236, 1404 (1966).
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Fic. 1. The variations with temperature of Young’s modulus
of three single crystals of molybdenum, Young’s modulus of
fine-grained polycrystalline molybdenum, and Young’s modulus
calculated for isotropic molybdenum from the single-crystal data.

squares fitting program with Egs. (1) and (2):
E1'=—{[2/(Cu—Cp)]—-Ci}® :

+3{[2/(Cu—Cr) J+(Cu+2C)Y} (1)
G=2{[2/(Cu—Cr) J— Cu "} +[Cu1]. )

Since data from four crystals were used, eight equa-
tions in three unknowns could be fitted at each tem-
perature and a reasonable estimate of the standard
deviation of each of the elastic constants could be
obtained.

From the calculated C;s other parameters were
determined using Zener’s notation as:

C=Cys—the coeflicient indicating resistance to shear
between (100) planes in the [010] direction.

C'=(Cy—Cr2)/2—the coefficient indicating resis-
tance to shear between (110) planes in the [110]
direction.

K=(Cu+2Cs) /3—the bulk modulus.
A =C/C'—the anisotropy ratio.

RESULTS

The results of this investigation have been presented
as a series of graphs. These graphs, Figs. 1 to 8, have
been plotted to the same scale so that the slopes are
directly comparable by observation.

As is normal for most metals in this temperature
range, Young’s modulus and shear modulus decreased
almost linearly with increasing temperature, as shown
in Figs. 1 and 2. The change in Young’s modulus with

‘temperature was largest for the [100] direction,

dropping nearly 169 over the 860°C temperature
range while the change was about 8%, for the [111]
direction. The shear modulus for the [111] direction
decreased 149, while the decrease was 8%, in the




